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1 Introduction

Our investigations into artificial neural networks began with work on the universality of

simple classes of neural networks. While that work has been continued and generafized by

many researchers in the US and abroad our focus shifted to questions of feasibility in both the

theoretical and computational senses. The theoretical questions deal with how much data is

needed in order for neural networks and other types of approximating classes to accurately

model a specific system with high confidence. The computational questions deal with the

efficiency of finding a good approximator from the class of feedforward neural networks.

Our work on the first question has been positively answered. That is, within the so-called

PAC learning framework, we have demonstrated that a large class of learning problems can be

solved using an amount of data that is not prohibitive. Moreover, the class of such learning

systems is also quite large and there exist universal, although not efficient or practical,

arning algorithms.

Our work on the second question has resulted in negative results. Namely, we discovered

(ntrinsic properties of feedforward neural networks that imply slow learning rates for con-

/entional learning algorithms. These results coincide with many practitioners' experiences

,hat generic approaches to training neural networks can be prohibitively expensive. It is

U mportant to add that our results do not preclude the possibility of improving training effi-

iency by using preprocessing techniques that might be specialized for a particular problem

domain.

This combination of results has led us to explore methods that satisfy desirable theoretical

learning properties and are efficiently trainable. In particular we are now investigating the

use of large, dense memories in novel, adaptive ways to store, retrieve and interpolate training

data. Such approaches appear promising because new memory technologies are imminent
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and will likely be very compact and inexpensive.

2 Learning, Smooth Simultaneous Estimation, and
Generalization

The primary reason for using neural networks is that they can generalize based on "training

data." This "generalization" pertains to the ability to perform well on novel inputs not seen

in the training data, and is to be contrasted with the ability to fit the training data itself. We

are studying issues related to this ability of neural networks to "generalize" based on limited

data. Our research derives from the "Probably Approximately Correct" (PAC) paradigm of

computational learning.

We have extended the PAC framework to encompass more practical considerations. Our

results also expose connections between learning and estimation theory, and they suggest

superior training schemes for neural networks.

Results in PAC le: ing are typically bounds on the number of examples required to

"learn" a function when the examples are drawn from an arbitrary distribution. That is,

bounds are obtained for the number of randomly drawn training samples, labeled by a

"target" function, that are required to guarantee with high confidence that a network trained

on the examples will perform well on future samples.

We see several drawbacks to the standard PAC framework. First, the bounds tend to be

overly conservative because the distribution of examples is allowed to be arbitrary. Second,

the functions are restricted to being binary-valued; in essence, PAC learning applies only to

sets. Lastly, it is assumed that the desired target function can be fitted perfectly with the

type and size of neural network being employed. This is clearly unrealistic since it implies

that zero generalization error is possible.

We have derived conditions for learning functions when some member of a known class of

distributions generates the examples, thus extending the PAC framework. This allows one

to incorporate prior knowledge into the learning process by specifying the class of underlying

distributions. The incorporation of such prior knowledge allows us to obtain less conservative

bounds on the size of the training set required for learning. We also allow the networks and
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targets to be real, vector, and even random functions of their inputs. So, our results apply

to the full range of network configurations.

In practice, for a fixed architecture, no network may perfectly match the target function.

We should therefore think of learning as the process of selecting the network with the least

generalization error. Most neural network training schemes take the approach of minimizing

the difference between the network's output and the value of the target function on the

training data. That is, they seek a network that minimizes the empirical error on the

training data.

We show that this is a special instance of a technique we call "s-mooth simultaneous

estimation," i.e., the existence of a "smooth" estimator that produces accurate generalization

error estimates for all the networks simultaneously. The smoothness requirement excludes

overly complex estimators from consideration. This viewpoint shows that learning is possible

if one can accurately estimate the generalization error from the training data for all the

networks simultaneously, for then one may simply pick the network with the least estimated

error. In many cases, an estimator that varies with the network architecture or draws on prior

knowledge of the underlying distribution will produce good simultaneous error estimates,

even though the empirical approach fails.

We have found a way to classify the instances in which smooth simultaneous estimation is

possible. This characterization is particularly useful because it shows how to construct such

an estimator, if it exists. This "canonical estimator" takes the form of a two-step procedure,

as follows. First, one selects a finite subset of all the candidate networks based on a portion

of the training data. This subset is chosen such that the output of any candidate network

on the chosen portion of the training data can be closely approximated by the output of

some network from the subset. Second, one estimates the error of each network in the

subset empirically from the remainder of the training data. A training scheme based on the

canonical estimator then selects the "trained" network by minimizing the error as estimated

by the canonical estimator.

We feel that training networks with the canonical estimator will resilt in networks that

perform better on novel inputs. In some simple cases where the empirical estimator works,

we have determined bounds which show that the canonical estimator compares favorably

with the empirical estimator, in terms of the amount of training data needed to achieve a
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given level of generalization performance. Additionally, if the canonical estimator does not

work (i.e, does not simultaneously estimate), neither will the empirical error estimator.

The canonical estimator is also instrumental in showing how an ensemble of networks

can learn many functions simultaneously from the same training data. Within the PAC

framework, we have found that this "simultaneous learning" requires only a modest increase

in the amount of training data.

We intend to apply the computational theory associated with PAC learning to our idea

of learning from the canonical smooth simultaneous estimator. By doing so, we hope to

address the trade-offs involved in efficiently training neural networks and achieving good

generalization.

3 Ill-conditioning of Training Problems

The training problem for feedforward neural networks is a special case of parameter opti-

mization. Loosely speaking, given a set of training data and an error criterion, training

typically involves estimating network parameters that result in a local minimum for the

objective function. Backpropagation is a method commonly used in the neural network

community for solving such optimization problems. Backpropagation is a combination of

efficient gradient computation coupled with a gradient c-scent method, often done stoclias-

tically or cyclically. We have explored and documented the intimate relationship between

backpropagation and so-called automatic differentiation methods of more general applicabil-

ity in scientific computing. Specifically, backpropagation is a special case of reverse iiode

derivative computation.

Many researchers have observed a slow convergence rate for such backprop!gation meth-

ods when used with feedforward sigmoidal-type neural networks. A signilicant body of

research projects have attempted to improve the convergence rates by modifying the basic

gradient descent technique, using higher order, more sophisticated ni iods or preprocessing

steps that are improvements over random starts. While many of t:,-'e methods lead to better

convergence rates, they are often not convincing because the , :tter rates are either constant

factor improvements or the metliods themselves are leuristic and appear to be special cases.

Our study of this situation has identified generic il! conditioning of Jacobian and Ilessian
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matrices as a major stumbling block in training problems for such neural networks. Ill-

conditioning of these matrices means that the surface of the objective function (optimization

criterion) has steep, narrow valleys at many points in the parameter space. This arises from

a local over-parameterization by the neural network model. It is important to separate this

over-parameterization from the fact that the neural network model may not exactly model

the phenomenon (that is, there is a nonzero residual).

Our identification of this ill-conditioning as a problem comes from careful analysis of

feedforward network architecture structure and the properties of sigmoidal activation func-

tions. We show that 5 different types of ill-conditioning can arise and our empirical studies

show that at least 3 of these types arise in actual, sample problems. Our conclusions in

this area of research are that generic methods for training feedforward neural networks are

destined to be inefficient and will not likely scale well.

4 Future Work

The results we have obtained in this research effort have pointed us in the direction of using

models and methods that satisfy the theoretical requirements of PAC learning systems yet are

easily trainable. Loosely speaking, the PAC criterion can be meet by any method that does a

reasonable job of reproducing the training data while achieving some sort of data compression

(learning) asymptotically. The key then becomes the efficiency with which that compression

is done. Backpropagation applied to feedforward networks attempts to do the compression

by fitting a highly nonlinear model to the data. We believe that methods based on large

memories and purely local properties are good candidates for efficient learning in a broad

context. This same general sentiment is shared by researchers in applied statistics who are

using adaptive spline techniques which gives us some confidence in this approach. We hope

to continue this direction of research in the future. At present, we have a general conceptual

framework and a preliminary implementation of a specific scheme for experimentation. That

work will be presented at a forthcoming SPIE meeting in Orlando.
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5 Educational Component

Four students have been involved in this research effort.

Ryan MacDonald completed his ECE Masters thesis in 1991. His work was the empirical

foundation that lead to the research on ill-conditioning of Jacobian and Hessian systems. lie

was a recipient of the prestigious Luce Fellowship (the first in University of Illinois history)

and spent a year in the Far East teaching. He is presently employed by an engineering

software house in the Dallas area.

Kevin Buescher is an ECE Ph.D. student expected to complete his thesis work in 1992.

Ie has worked on the PAC learning results which form the core of his thesis research.

Sirpa Saarinen is a CS Ph.D. student expected to complete her Ph.D. thesis work in

1992 also. Her work has involved the analytic studies of network Jacobian and Hessian

matrices and she is presently carrying out the analysis and implementation of a memory

based adaptive learning system.

Richard Burg is a CS Masters student who has implemented a shared-memory parallel

algorithm method for k-d trees that will ultimately be used our future work. Ile is expected

to complete his thesis work in late 1992.

Randall Braniley is a postdoctoral assistant who worked on this project. His Ph.D. work

was on linear and nonlinear optimization methods and he contributed to the supported

research dealing with ill-conditioning of training problems.
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